Solve the absolute value equation.

1)
$$|4m + 2| = 8$$

2)
$$2|x+7|-7=1$$

Solve the inequality. Write the solution set using interval notation and graph it.

3)
$$6x - 11 \quad 7x - 23$$

4)
$$14 < -4b + 2$$
 30

Solve the absolute value inequality. Write the solution set using interval notation.

6)
$$2|x-3| < 4$$

Find the distance between the points, and find the midpoint of the line segment joining them.

Find the center and radius of the circle.

8)
$$(x + 5)^2 + (y - 1)^2 = 144$$

Write the standard equation for the circle.

9) Center at
$$(-8, -4)$$
, radius $\sqrt{17}$

Graph the equation.

10)
$$x^2 + y^2 + 6x + 4y + 9 = 0$$

Find the equation of the line through the given pair of points. Solve it for y if possible.

Change the equation to slope-intercept form and identify the slope and y-intercept.

12)
$$-6x + 9y = 10$$

Write an equation in standard form using only integers for the line described.

13) The line through (4, 2), parallel to
$$y = -\frac{5}{7}x + 1$$

14) The line through (0, 5), perpendicular to
$$y = \frac{5}{3}x + 2$$

Solve the problem.

- 15) Suppose that a sales person observes that if an item is priced at \$3 per item then 10 items are sold. If 8 items are sold for \$5 per item then find an equation to model the number of items sold, y, as a function of dollars per item, x.
- 16) A driver wants to gauge the fuel efficiency of her vehicle at speeds of 30 mph and above. She notices that traveling at an average speed of 40 mph results in a rating of 25 mpg, whereas, at an average speed of 45 mph, her car rates 15 mpg. Find an equation to model the gas mileage, m, as a function of average speed s mph.
- 17) A car rental company has two rental rates. Rate 1 is \$40 per day plus \$.10 per mile. Rate 2 is \$80 per day plus \$.05 per mile. If you plan to rent for one day, how many miles would you need to drive to pay less by taking Rate 2?
- 18) Assume that the sales of a certain appliance dealer are approximated by a linear function. Suppose that sales were \$5000 in 1982 and \$64,000 in 1987. Let x = 0 represent 1982. Find the equation giving yearly sales S(x).

Use the vertical line test to determine whether y is a function of x.

19)

Find the domain and range.

20)
$$y = \sqrt{3 + x}$$

21)
$$y = 2x^5$$

22)
$$f(x) = 11 + x^2$$

State the domain of the rational function.

23)
$$f(x) = \frac{(x-9)(x+2)}{x^2-1}$$

Find the difference quotient, $\frac{f(x+h)-f(x)}{h}$, for the

function and simplify it.

24)
$$f(x) = 2x - 8$$

25)
$$f(x) = x^2 - 6x$$

Solve the problem.

26) The cost of manufacturing a molded part is related to the quantity produced during a production run. When 100 parts are produced, the cost is \$300. When 600 parts are produced, the cost is \$2300. What is the average cost per part?

Determine the intervals on which the function is increasing, decreasing, and constant.

27)

Graph the equation.

28)
$$y = 5|x| - 9$$

29)
$$y = -x^2 - 4$$

Graph.

31)
$$f(x) = \begin{cases} x + 4, & \text{for } x < 0 \\ 4, & \text{for } x = 0 \end{cases}$$

Write the equation of the graph after the indicated transformation(s).

32) The graph of $y = \sqrt[3]{x}$ is shifted 5.6 units to the left. This graph is then vertically stretched by a factor of 3.6. Finally, the graph is reflected across the x-axis.

List the symmetries of the given function, if there are any. Otherwise, state "No symmetry".

33)
$$f(x) = 7x^5 + 8x^3$$

For the pair of functions, perform the indicated operation.

34)
$$f(x) = 6x - 1$$
, $g(x) = 7x - 3$
Find $f \cdot g$.

35) Find
$$(f + g)(-5)$$
 given $f(x) = x + 7$ and $g(x) = x - 1$.

36) Given
$$f(x) = 4x - 3$$
 and $g(x) = -8x + 6$, find $(f - g)(a)$.

37) Find
$$(g - f)(-2)$$
 when $f(x) = \frac{x-4}{3}$ and $g(x) = 2x + 5$.

38) Given
$$f(x) = \sqrt{x+4}$$
 and $g(x) = 8x - 8$, find $(f g)(x)$.

Find the specified domain.

39) For
$$f(x) = 2x - 5$$
 and $g(x) = \sqrt{x + 4}$, what is the domain of f/g ?

Find the inverse of the function.

40)
$$f(x) = 4x + 6$$

41)
$$f(x) = x^2 - 19$$
, $x = 0$

Identify the vertex of the parabola.

42)
$$y = 8x^2 - 144x + 652$$

Find the y-intercepts and any x-intercepts.

43)
$$y = x^2 - 4x - 21$$

Solve the quadratic inequality.

44)
$$x^2 + 5x - 14$$
 0

45)
$$x^2 + 2x = 3$$

Solve the problem.

- 46) The number of mosquitoes M(x), in millions, in a certain area depends on the June rainfall x, in inches: $M(x) = 10x x^2$. What rainfall produces the maximum number of mosquitoes?
- 47) John owns a hotdog stand. He has found that his profit is represented by the equation $P = -x^2 + 78x + 86$, with P being profits and x the number of hotdogs. How many hotdogs must he sell to earn the most profit?

Perform the indicated operations and write the answer in the form a + bi, where a and b are real numbers.

48)
$$(7 + 6i) - (-5 + i)$$

49)
$$(6 - 8i)(7 - 5i)$$

3

Write the quotient in the form a + bi.

$$50) \frac{9+3i}{3-7i}$$

Find all real solutions to the equation.

51)
$$\sqrt{x+13} = x-7$$

52)
$$7 + \sqrt{3x} = 1 + x$$

Use the rational zero theorem to find all <u>possible</u> rational zeros for the polynomial function.

53)
$$f(x) = 2x^3 + 6x^2 + 13x - 8$$

Find all of the real and imaginary zeros for the polynomial function.

54)
$$f(x) = x^4 + 6x^3 + 7x^2 - 6x - 8$$

Find all real and imaginary solutions.

55)
$$x^4 - 256 = 0$$

56)
$$x^2 + 35 = 5x$$

57)
$$k^4 - 13k^2 + 42 = 0$$

58)
$$x^{2/3} - 7x^{1/3} + 10 = 0$$

Solve the problem.

59) $A(x) = -0.015x^3 + 1.05x$ gives the alcohol level in an average person's blood x hrs after drinking 8 oz of 100-proof whiskey. If the level exceeds 1.5 units, a person is legally drunk. Would a person be drunk after 4 hours?

Describe the behavior of the function's graph at its x-intercepts.

60)
$$f(x) = (x-2)^2(x+6)$$

61)
$$x^3 - 3x^2 - 9x + 27$$

Sketch the graph of the polynomial function.

62)
$$P(x) = -2x(x - 2)^2$$

For the given function, find all asymptotes of the type indicated (if there are any).

63)
$$f(x) = \frac{x-2}{x^2-9}$$
, vertical

64)
$$f(x) = \frac{x^2 - 3x + 7}{x + 7}$$
, oblique

65)
$$f(x) = \frac{6x^2 - 5x - 3}{5x^2 - 9x + 4}$$
, horizontal

Sketch the graph of the function, showing all asymptotes with dotted lines.

66)
$$f(x) = \frac{5x+1}{x-1}$$

Solve the inequality.

67)
$$\frac{4}{x+5}$$
 $\frac{2}{x-2}$

Use transformations to help you graph the function.

69)
$$f(x) = \log_{2}(x-1)$$

Solve the equation.

70)
$$5^{-x} = \frac{1}{25}$$

Find the value of the logarithmic function.

71)
$$\log_8\left(\frac{1}{64}\right)$$

Find the domain of the function.

73)
$$f(x) = \log_2 (2x - 3)$$

Solve the equation.

74)
$$\log_2 x = 3$$

Simplify the expression.

$$75) 10^{\log(t)}$$

Rewrite the expression as a single logarithm.

76)
$$6 \log_2 (6x - 1) + 4 \log_2 (5x - 4)$$

Rewrite the expression as a sum or difference of logarithms or multiples of logarithms.

77)
$$\log_5\left(\frac{x^4y^7}{4}\right)$$

Solve the equation. Round your solution to three decimal places.

78)
$$4^{3x-3} = 12$$

Solve the equation. Give an exact solution.

79)
$$\log(x^2 - 39) = 1$$

Solve the problem.

80) If \$4000 is invested in an account that pays interest compounded continuously, how long will it take to grow to \$12,000 at 7%?

Solve the equation. Give an exact solution.

81)
$$\log_4(x-5) + \log_4(x-5) = 1$$

82)
$$ln(5x - 3) = ln(9) - ln(x - 3)$$

Solve the problem.

- 83) An initial investment of \$14,000 is appreciated for 8 years in an account that earns 9% interest, compounded semiannually. Find the amount of money in the account at the end of the period.
- 84) A certain radioactive isotope has a half-life of approximately 1100 years. How many years to the nearest year would be required for a given amount of this isotope to decay to 30% of that amount?
- 85) Coyotes are one of the few species of North American animals with an expanding range. The future population of coyotes in a region of Mississippi can be modeled by the equation P = 45 + 20ln(20t + 1), where t is time in years. Use the equation to determine when the population will reach 140. (Round to the nearest tenth of a year.)

Graph:

$$86)\frac{x^2}{9} + \frac{y^2}{49} = 1$$

$$87)\frac{(x+1)^2}{9} + \frac{(y-3)^2}{25} = 1$$

$$88)\,\frac{x^2}{25} - \frac{y^2}{36} = 1$$

Answer Key

- 2) {-3, -11}
- 3) (- , 12]

4) [-7, -3)

$$5)\left(-,\frac{2}{7}\right)\left[\frac{10}{7},\right.$$

- (6)(1,5)
- 7) $5\sqrt{2}$; $\left(-\frac{17}{2}, -\frac{3}{2}\right)$
- 8) Center: (-5, 1); radius: 12
- 9) $(x + 8)^2 + (y + 4)^2 = 17$
- 10)

- 11) y = 5x 23
- 12) $y = \frac{2}{3}x + \frac{10}{9}, \frac{2}{3}, \left[0, \frac{10}{9}\right]$
- 13) 5x + 7y = 34
- 14) 3x + 5y = 25
- 15) y = -x + 13
- 16) m = -2s + 105
- 17) more than 800 miles
- 18) S(x) = 11,800x + 5000
- 19) No
- 20) D = [-3,); R = [0,)
- 21) D = (-,); R = (-,)
- 22) D = (-,); R = [11,)
- 23) (- , -1) (-1, 1) (1,)
- 24) 2
- 25) 2x + h 6
- 26) \$4.00 per part

27) Increasing on (-2, 0) and (3, 5); Decreasing on (1, 3); Constant on (-5, -2)

28)

29)

30)

31)

- 32) $f(x) = -3.6\sqrt[3]{x + 5.6}$
- 33) Origin
- 34) $(f \cdot g)(x) = 42x^2 25x + 3$
- 35) -4
- 36) 12a 9
- 37) 1
- 38) $2\sqrt{2x-1}$
- 39) (-4,)
- 40) $f^{-1}(x) = \frac{x-6}{4}$
- 41) $f^{-1}(x) = \sqrt{x+19}$
- 42) (9, 4)
- 43) y-intercept (0, -21), x-intercepts (7, 0) and (-3, 0)
- 44) (- , -7] [2,)
- 45) [-3, 1]
- 46) 5 in.
- 47) 39 hotdogs
- 48) 12 + 5i
- 49) 2 86i
- $50)\,\frac{3}{29}+\frac{36}{29}i$
- 51) {12}
- 52) {12}

53)
$$\pm \left(1, \frac{1}{2}, 2, 4, 8\right)$$

- 54) -4, -2, -1, 1
- 55) {±4, ±4i}

$$56) \left\{ \frac{5 \pm i\sqrt{115}}{2} \right\}$$

- 57) $\{\pm\sqrt{7},\pm\sqrt{6}\}$
- 58) {125, 8}
- 59) Yes

Answer Key

- 60) Does not cross at (2, 0), crosses at (-6, 0)
- 61) Does not cross at (3, 0), crosses at (-3, 0)

62)

- 63) x = 3, x = -3
- 64) y = x 10

66)

67) (-5, 2) [9, 68)

69)

- 70) {2}
- 71) -2
- 72) -8

$$73)\left(\frac{3}{2},\right)$$

- 74) **8**
- 75) t
- 76) $\log_2 ((6x-1)^6 (5x-4)^4)$
- 77) $4 \log_5(x) + 7 \log_5(y) \log_5(4)$
- 78) 1.597
- 79) ±7
- 80) 15.7 years
- 81) 7
- 82) $\frac{18}{5}$
- 83) \$28,313.18
- 84) 1911 years
- 85) 5.7 years
- 86)

87)

88)

