To get full credits, show all necessary work. No calculators, closed exam.

- 1. (1 points) $\arcsin\{\sin(\frac{2\pi}{3})\}$
 - (1 points) Change the degree measure to radian measure: $\pi^{\circ} =$
 - (1 points) Solve for: log(0.00000001) =______
- 2. (3 points) Given u = <1,3>, v = <2,-1>, perform the calculations for :
 - (a) $2u \cdot 3v =$ _____
 - (b) 2u + 3v =
 - (c) For 2u + 3v, magnitude = _____,
- 3. (4 points) Solve the equation: $\log_2(x+5) \log_2(x-5) = \log_2 1024$

Answer: $x = \underline{\hspace{1cm}}$

4. (5 points) Find the summation of the sequence: 8, 16, 32, ..., 65536 (step by step).

Pre-Calculus Final Exam 1 by www.DumbLittleDoctor.com

5. (3 points) Find the equivalent expressions for

$$\cos^2(arc\cot x) + \sin^2(arc\cot x) = \underline{\hspace{1cm}}$$

6. (3points) Find the equivalent expressions for $tan(sin^{-1} x) =$ (step by step)

7. (4 points) First the exact value of $\tan \frac{\alpha}{2}$, given $\sin \alpha = -\frac{4}{5}$ and $\frac{3\pi}{2} < \alpha < 2\pi$.

8. (5 points) Solve the rational inequalities and leave the solution set in <u>interval notation</u>.:

$$\frac{x - 2012}{(x - 2009)(x - 2010)} \ge 0$$

9. (5 points) Solve the inequality and leave the solution set in <u>interval notation</u>:

$$2x^3 + x^2 - 4x - 3 < 0$$
.

10. (5 points) Find and simplify the difference quotient, $\frac{f(x+h)-f(x)}{h}$, of $f(x)=x^2+x-3$.

11. (5 points) Solve $\sqrt{3x-2} - \sqrt{x} = 2$

12. (3 points) Find the inverse f^{-1} for the function: $f(x) = \frac{1}{2} \cdot 6^{(5x-3)}$. Answer: $f^{-1}(x) =$

13. (5 points) Write the equation of the hyperbola that has asymptotes y = 2x - 5 & y = -2x + 3, and y-intercepts (2, 9) & (2, -11).

14. (5 points) Solve step by step $\begin{cases} \frac{2}{(x-2)^2} + \frac{2}{(y+1)^2} = \frac{1}{2} \\ \frac{4}{(x-2)^2} + \frac{1}{(y+1)^2} = \frac{2}{3} \end{cases}$

.

Pre-Calculus Final Exam 1 by www.DumbLittleDoctor.com

15. (3 points) Write a slope-intercept equation of the line passes through the point $\left(5, -\frac{7}{2}\right)$ and is perpendicular to 8x + 10y = 5.

16. (3 points) Sketch the graph of the solution set to $\begin{cases} x^2 + y^2 < 4 \\ y \le x - 2 \end{cases}$

17. (4 points) Find all real numbers that satisfy the equation $\cot 3x = 1$.

18. (5 points) Find the partial fraction decomposition for $\frac{x^2 + x - 31}{(x+3)^2(x-2)}$

- 19. (5 points) For the function $y = -\pi \cos(-\frac{2\pi}{3}x + \frac{1}{\pi}) 2$, determine:
 - (a) (1 points) Domain = _____
 - (b) (1 points): Amplitude = _____
 - (c) (1 points) Phase shift = _____
 - (d) (1 points) Period = _____
 - (e) (1 points) Range = _____
- 20. (4 points)Prove the identity step by step: $\frac{\csc x 1}{\cot x} = \frac{\cot x}{\csc x + 1}.$

21. (5 points) Eliminate the parameter, and identify the graph of the pair of parametric equations: $x = -5\sqrt{1-\sin t}$, $y = 5\cos^2 t$, $-\infty < t < \infty$

Extra credit(2 points): what's most memorable or funny thing during the lecture or during the discussion? (which you might still remember even when you are over 80 years old)