1. Consider the reaction: $N_2O_4(g) \implies 2NO_2(g)$ Write the equilibrium constant for this reaction in terms of the equilibrium constants, Ka and Kb, for reactions 1 and 2 below:

	1.	$N_2(g) + 2 O_2(g)$	\rightleftharpoons	$N_2O_4(g)$		K _a
	2.	1/2 N ₂ (g) + O ₂ (g)		NO ₂ (g)		K_{b}
	a. K_a/K_b b. K_a^2/K_b c. K_b/K_a d. K_b/K_a^2 e. K_b^2/K_a					
2.	The equilibrium constant, K _c , for the following reaction is 16.4 at 768 $2 \text{ NH}_3(g) \rightleftharpoons N_2(g) + 3 \text{ H}_2(g)$ Calculate K _c at this temperature for: $1/2 \text{ N}_2(g) + 3/2 \text{ H}_2(g) \rightleftharpoons \text{NH}_3(g)$					

- a. 268.96
- b. 4.05
- c. 0.25
- d. 0.06
- e. 0.03
- 3. Consider the following reaction where $K_c = 55.6$ at 698 K:

 $H_2(g) + I_2(g) \rightleftharpoons 2 HI(g)$ A reaction mixture was found to contain 4.05•10⁻² moles of $H_2(g)$, 4.21•10⁻² moles of $I_2(g)$ and 0.269 moles of HI(g), in a 1.00 Liter container. Which of the following statements is true?

- a. In order to reach equilibrium HI(g) must be consumed.
- b. In order to reach equilibrium K_c must decrease.
- c. In order to reach equilibrium H_2 must be produced.
- d. Q is less than K.
- e. The reaction is at equilibrium. No further reaction will occur.
- 4. The pH of an aqueous solution of 0.159 M sodium cyanide, NaCN (aq), is $(K_{b}(CN^{-}) = 2.5 \cdot 10^{-5})$
 - a. 0.80
 - b. 2.70
 - c. 4.60
 - d. 9.40
 - e. 11.30

- 5. We examine the following reaction at 250 °C: $PCI_5(g) \implies PCI_3(g) + CI_2(g)$. At equilibrium we find $[PCI_5] = 3.4 \times 10^{-5}$ M, $[PCI_3] = 1.3 \times 10^{-2}$ M, and $[CI_2] = 1.0 \times 10^{-4}$ M. Calculate the equilibrium constant, K_C, for the reaction.
 - a. 26
 - b. 5.1
 - c. 0.15
 - d. 0.038
 - e. 2.8 x 10⁻⁴
- 6. A chemist prepared a sealed tube with 0.85 atm of PCl₅ at 500 K. The pressure increased as the following reaction occurred. When equilibrium was achieved, the pressure in the tube had increased to 1.25 atm. Calculate K_p. PCl₅(g) → PCl₃(g) + Cl₂(g)
 - a. 0.36
 - b. 0.19
 - c. 0.10
 - d. 0.047
 - e. 0.089
- A mixture of 0.30 mol NO and 0.30 mole CO₂ is placed in a 2.00 L flask and allowed to reach equilibrium at a given temperature. Analysis of the equilibrium mixture indicated that 0.10 mol of CO was present. Calculate K_C for the reaction.

$$NO(g) + CO_2(g) \implies NO_2(g) + CO(g)$$

- a. 0.033
- b. 0.05
- c. 0.25
- d. 1.1
- e. 0.33
- 8. A 2.00 liter flask is filled with 1.5 mole SO₃, 2.5 mole SO₂, and 0.5 mole O₂, and allowed to reach equilibrium. At this temperature, $K_C = 1.0$. Predict the effect on the concentration of O₂ as equilibrium is being achieved by using Q, the reaction quotient.

$$2SO_3(g) \implies 2SO_2(g) + O_2(g)$$

- a. [O₂] will increase because Q < K
- b. $[O_2]$ will increase because Q > K
- c. [O₂] will decrease because Q < K
- d. [O₂] will decrease because Q > K
- e. [O₂] will remain the same because Q = K

- 9. Consider the reaction 2A(g) ⇒ B(g) where K_C = 0.5 at the temperature of the reaction. If 2.0 moles of A and 2.0 moles of B are introduced into a 1.00 liter flask, what change in concentrations (if any) would occur in time?
 - a. [A] increases and [B] increases
 - b. [A] increases and [B] decreases
 - c. [A] decreases and [B] increases
 - d. [A] decreases and [B] decreases
 - e. [A] and [B] remain the same
- 10. Consider the reaction A(g) \implies 2B(g) where K_c = 1.5 at the temperature of the reaction. If 3.0 moles of A and 3.0 moles of B are introduced into a 1.00 liter flask, what change in concentrations (if any) would occur in time?
 - a. [A] increases and [B] increases
 - b. [A] increases and [B] decreases
 - c. [A] decreases and [B] increases
 - d. [A] decreases and [B] decreases
 - e. [A] and [B] remain the same
- Exactly 0.50 mole of sulfur trioxide, 0.10 mole of sulfur dioxide, 0.20 mole of nitrogen monoxide and 0.30 mole nitrogen dioxide are sealed in a 1.0-L flask at 1500 °C. The equilibrium constant K_C is 0.24 for the following reaction.

$$SO_3(g) + NO(g) \implies SO_2(g) + NO_2(g) \qquad K_c = 0.24$$

When equilibrium is achieved, what changes in concentrations of SO_3 and NO will be observed?

- a. [SO₃] increases; [NO] increases
- b. [SO₃] increases; [NO] decreases
- c. [SO₃] decreases; [NO] decreases
- d. [SO₃] decreases; [NO] increases
- e. all concentrations remain the same
- 12. A flask contains the following system at equilibrium:

 $Mg(OH)_2(s) \implies Mg^{2+}(aq) + 2 OH^{-}(aq)$

Which of the following reagents could be added to increase the solubility of Mg(OH)₂?

- a. NH₃
- b. NaOH
- c. HCI
- $d. \ H_2O$
- e. MgCl₂

13. All of the following can function both as an acid and base EXCEPT

- a. HPO42-
- b. $H_2PO_4^-$
- c. HCO₂⁻
- d. OH⁻
- e. CH₃COO⁻

14. The $K_a(HCO_3)$ is the equilibrium constant for the reaction

- a. $H_2CO_3 + H_2O \Longrightarrow H_3O^+ + HCO_3^$ b. $HCO_3^- + H_2O \Longrightarrow H_3O^+ + CO_3^{2^-}$ c. $HCO_3^- + H_2O \Longrightarrow H_2CO^- + OH^$ d. $HCO_3^- + H_3O^+ \Longrightarrow H_2CO^- + H_2O$ e. $HCO_3^- + OH^- \Longrightarrow CO_3^{2^-} + H_2O$
- 15. What is the pH of a 0.054 M NaOH solution at 25 °C?
 - a. 1.14
 - b. 1.27
 - c. 8.64
 - d. 12.73
 - e. 13.95
- 16. We have a 4.63 x 10^{-4} M solution of HCl. What is the pH of this solution at 25 °C?
 - a. 3.33
 - b. 4.00
 - c. 4.63
 - d. 8.37
 - e. 9.25
- 17. A 0.20 M solution of an acid, HA, has a pH of 3.82 at 25 °C. What is K_a for this acid?
 - a. 7.6×10^{-4} b. 4.5×10^{-5} c. 1.1×10^{-7} d. 2.3×10^{-8} e. 4.5×10^{-9}

18. What is the pH of a 1.86 M CH₃CH₂CO₂H solution at 25 °C? $K_a = 1.3 \cdot 10^{-5}$

- a. 4.92
- b. 4.88
- c. 2.42
- d. 2.31
- e. 2.08

19. In the following reaction

$$NH_4^+(aq) + H_2O(I) \leftrightarrow NH_3(aq) + H_3O^+(aq)$$

- a. NH_4^+ is an acid and NH_3 is its conjugate base. b. H_2O is an acid and H_3O^+ is its conjugate base. c. NH_4^+ is an acid and H_3O^+ is its conjugate base. d. H_2O is an acid and NH_4^+ is its conjugate base. e. NH_3 is an acid and NH_4^+ is its conjugate base.

- 20. At 25 °C, what is the pH of a 3.25 M solution of ammonium chloride, NH₄Cl? $K_a(NH_4^+) = 5.6 \cdot 10^{-10}$
 - a. 2.37
 - b. 4.37
 - c. 4.62
 - d. 9.37
 - e. 9.63