More Tutorial at www.dumblittledoctor.com

1. Find the following.

[See Review for Exam II for integration tips and strategies.]

(a) Let $u = x^3$, so $du = 3x^2 dx$ and $du/3 = x^2 dx$.

$$\int 12x^2 \cos(x^3) dx = 12 \int \cos(x^3)x^2 dx$$

$$= 12 \int \cos(u) \frac{du}{3}$$

$$= 4 \sin(u) + C$$

$$= 4 \sin(x^3) + C$$

(b) We'll use integration by parts: $u = x \Rightarrow du = dx$ and $dv = e^{-3x} \Rightarrow v = \frac{e^{-3x}}{-3}$.

$$\int_{0}^{\infty} xe^{-3x} dx = \lim_{t \to \infty} \int_{0}^{t} xe^{-3x} dx$$

$$= \lim_{t \to \infty} \left[x \frac{e^{-3x}}{-3} \Big|_{0}^{t} - \int_{0}^{t} \frac{e^{-3x}}{-3} dx \right]$$

$$= \lim_{t \to \infty} \left[x \frac{e^{-3x}}{-3} - \frac{e^{-3x}}{9} \right]_{0}^{t}$$

$$= \lim_{t \to \infty} \left[\frac{-x}{3e^{3x}} - \frac{1}{9e^{3x}} \right]_{0}^{t}$$

$$= \lim_{t \to \infty} \left[\frac{-t}{3e^{3t}} - \frac{1}{9e^{3t}} \right] - \left[\frac{0}{3e^{0}} - \frac{1}{9e^{0}} \right]$$

$$= (0 - 0) - (0 - 1/9)$$

$$= 1/9$$

So, the integral converges (to this value).

(c) This integral is improper at x = 4 because the integrand has a vertical asymptote there, so we split into two integrals.

$$\begin{split} \int_{0}^{6} \frac{dx}{(x-4)^{2}} &= \int_{0}^{4} \frac{dx}{(x-4)^{2}} + \int_{4}^{6} \frac{dx}{(x-4)^{2}} \\ &= \lim_{a \to 4^{-}} \int_{0}^{a} \frac{dx}{(x-4)^{2}} + \lim_{b \to 4^{+}} \int_{b}^{6} \frac{dx}{(x-4)^{2}} \\ &= \lim_{a \to 4^{-}} \frac{-1}{(x-4)} \Big|_{0}^{a} + \lim_{b \to 4^{+}} \frac{-1}{(x-4)} \Big|_{b}^{6} & \int u^{-2} du = -u^{-1} + C \\ &= \lim_{a \to 4^{-}} \left[\frac{-1}{(a-4)} - \frac{-1}{(0-4)} \right] + \lim_{b \to 4^{+}} \left[\frac{-1}{(6-4)} - \frac{-1}{(b-4)} \right] \end{split}$$

Since $\lim_{a\to 4^-} \frac{-1}{(a-4)} = \infty$ and $\lim_{b\to 4^+} -\frac{-1}{(b-4)} = \infty$, this integral diverges (to ∞).

(d) Partial Fractions:

Write
$$\frac{3x^2 + 2x - 5}{(x^2 + 1)(x - 4)} = \frac{Ax + B}{x^2 + 1} + \frac{C}{x - 4}$$
. Now multiply both sides by $(x^2 + 1)(x - 4)$ to get
$$3x^2 + 2x - 5 = (Ax + B)(x - 4) + C(x^2 + 1).$$

Let
$$x = 4$$
. Then $51 = C(17)$, so $C = 3$.

Let
$$x = 0$$
. Then $-5 = B(-4) + 3(1)$, so $B = 2$.

Let x = 1. Then 0 = (A(1) + 2)(-3) + 3(2), so A = 0.

$$\int \frac{3x^2 + 2x - 5}{(x^2 + 1)(x - 4)} dx = \int \left[\frac{2}{x^2 + 1} + \frac{3}{x - 4} \right] dx$$
$$= 2 \arctan x + 3 \ln|x - 4| + D$$

(e) Let $u = \sec x$, so $du = \sec x \tan x \, dx$.

New limits: $x = 0 \Rightarrow u = \sec 0 = 1/\cos 0 = 1$ and $x = \pi/3 \Rightarrow u = \sec(\pi/3) = 1/\cos(\pi/3) = 2$.

$$\int_{0}^{\pi/3} \tan^{3}x \sec^{5}x \, dx = \int_{0}^{\pi/3} \tan^{2}x \sec^{4}x \sec x \tan x \, dx \qquad \text{Break off a sec } x \tan x.$$

$$= \int_{0}^{\pi/3} (\sec^{2}x - 1) \sec^{4}x \sec x \tan x \, dx \qquad \text{Use } \tan^{2}x = \sec^{2}x - 1.$$

$$= \int_{1}^{2} (u^{2} - 1)u^{4} \, du \qquad \qquad \text{Change the limits. See above.}$$

$$= \int_{1}^{2} (u^{6} - u^{4}) \, du$$

$$= \left[\frac{u^{7}}{7} - \frac{u^{5}}{5} \right]_{1}^{2}$$

$$= \left[\frac{2^{7}}{7} - \frac{2^{5}}{5} \right] - \left[\frac{1^{7}}{7} - \frac{1^{5}}{5} \right]$$

$$= \frac{418}{35} \qquad \qquad \text{This is about } 11.943.$$

(f) Let $x = 5 \sin t$, so $dx = 5 \cos t dt$.

$$x^{2} + y^{2} = 5^{2} \Rightarrow y = \sqrt{25 - x^{2}}$$

$$\sin t = \frac{\text{opp}}{\text{hyp}} = \frac{x}{5} \Rightarrow t = \arcsin(x/5)$$

$$\cos t = \frac{\text{adj}}{\text{hyp}} = \frac{\sqrt{25 - x^{2}}}{5} \Rightarrow 5\cos t = \sqrt{25 - x^{2}}$$

$$\int \sqrt{25 - x^2} \, dx = \int 5 \cos t \cdot 5 \cos t \, dt$$
Use dx and $\cos t$ from above.
$$= \int 25 \cos^2 t \, dt$$

$$= 25 \int \left[\frac{1}{2} + \frac{\cos(2t)}{2} \right] \, dt$$
Use $\cos^2 t = \frac{1}{2} + \frac{\cos(2t)}{2}$.
$$= 25 \left[\frac{t}{2} + \frac{\sin(2t)}{4} \right] + C$$
Let $u = 2t$ to integrate $\cos(2t)$.
$$= 25 \left[\frac{\arcsin(x/5)}{2} + \frac{2 \sin t \cos t}{4} \right] + C$$
Use $\sin(2t) = \sin t \cos t$ and x from above.
$$= 25 \left[\frac{\arcsin(x/5)}{2} + \frac{2 \cdot \frac{x}{5} \cdot \sqrt{25 - x^2}}{4} \right] + C$$
Use $\sin t$ and $\cos t$ from above.
$$= 25 \left[\frac{\arcsin(x/5)}{2} + \frac{x\sqrt{25 - x^2}}{50} \right] + C$$

2. Find the best possible left, right, midpoint, trapezoidal, and Simpson's approximations to $\int_{0}^{0} f(x) dx$ given the data in the table below.

\boldsymbol{x}	-2	-1.5	-1	-0.5	0
f(x)	2	3	6	10	11

$$L_4 = (2+3+6+10)(0.5) = 10.5$$
 $R_4 = (3+6+10+11)(0.5) = 15$ $T_4 = 0.5(L_4 + R_4) = 12.75$

We cannot compute M_4 , which would require the values of f at x = -1.75, -1.25, -0.75, and -0.25. Instead, we find $M_2: M_2 = (3+10)(1) = 13$.

Finally,
$$S_4 = \frac{2M_2 + T_2}{3} = \frac{2(13) + 12.5}{3} = \frac{77}{6}$$

3. If you use numerical integration to estimate $\int_a^b \ln x \, dx$, how would the following be ordered from least to greatest? L_{100} , R_{100} , M_{100} , T_{100} , S_{200} .

The integrand is increasing and concave down, so we have $L_{100} < T_{100} < S_{200} < M_{100} < R_{100}$.

What can you say with certainty about where $\int_a^b \ln x \, dx$ would fit into your ordering? It would fall somewhere between T_{100} and M_{100} .

4. Find bounds for each of the following errors if $I = \int_0^2 e^{-3x} dx$.

(a)
$$|I - L_{100}| \le \frac{K_1(b-a)^2}{2n} = \frac{3(2-0)^2}{2(100)} = \frac{3}{50}$$

 $K_1 = \max \text{ of } |f'(x)| \text{ on } [0,2] = \max \text{ of } 3e^{-3x} \text{ on } [0,2] = 3 \text{ (occurs at } x = 0)$

(b)
$$|I - T_{100}| \le \frac{K_2(b-a)^3}{12n^2} = \frac{9(2-0)^3}{12(100)^2} = \frac{3}{5000}$$

 $K_2 = \max \text{ of } |f''(x)| \text{ on } [0,2] = \max \text{ of } 9e^{-3x} \text{ on } [0,2] = 9 \text{ (occurs at } x = 0)$

(c)
$$|I - M_{100}| \le \frac{K_2(b-a)^3}{24n^2} = \frac{9(2-0)^3}{24(100)^2} = \frac{3}{10000}$$

 $K_2 = \text{same as in previous part}$

5. Use Euler's Method with 3 steps to estimate y(3/4) if dy/dx = y - 3 and y(0) = 1.

x	y	$\frac{dy}{dx} \cdot \Delta x = \Delta y$
0	1	(-2)(0.25) = -0.5
0.25	0.5	(-2.5)(0.25) = -0.625
0.5	-0.125	(-3.125)(0.25) = -0.78125
0.75	-0.90625	

6. Write an integral equal to the area between y = 2x + 3 and $y = x^2 + 7x - 3$.

First, find where the curves intersect.

$$x^{2} + 7x - 3 = 2x + 3$$

$$x^{2} + 5x - 6 = 0$$

$$(x+6)(x-1) = 0$$

$$\Rightarrow x = -6, x = 1$$

Between x = -6 and x = 1, y = 2x + 3 is above $y = x^2 + 7x - 3$. (Plug in x = 0 to check.) So, the area between them is $\int_{-6}^{1} [(2x + 3) - (x^2 + 7x - 3)] dx$. [This equals 343/6.]

7. Compute the arc length of $y = \sqrt{1-x^2}$ from x = 0 to x = 1/2.

First, we find
$$f'(x) = \frac{1}{2}(1-x^2)^{-1/2}(-2x) = \frac{-x}{\sqrt{1-x^2}}$$
.

Thus,
$$[f'(x)]^2 = \frac{x^2}{1 - x^2}$$
.

$$\int_{a}^{b} \sqrt{1 + [f'(x)]^{2}} dx = \int_{0}^{1/2} \sqrt{1 + \frac{x^{2}}{1 - x^{2}}} dx$$

$$= \int_{0}^{1/2} \sqrt{\frac{1 - x^{2}}{1 - x^{2}}} + \frac{x^{2}}{1 - x^{2}} dx$$

$$= \int_{0}^{1/2} \sqrt{\frac{1}{1 - x^{2}}} dx$$

$$= \int_{0}^{1/2} \frac{\sqrt{1}}{\sqrt{1 - x^{2}}} dx$$

$$= \arcsin x \Big|_{0}^{1/2}$$

$$= \arcsin(1/2) - \arcsin(0)$$

 $= \pi/6 - 0$ $= \pi/6$

This is the definition of arc length.

Get a common denominator.

- 8. Consider the region bounded by y = 0, x = 2, and $y = x^2$. Write an integral equal to the volume of the object created when the region is revolved about
 - (a) the x-axis

Slice vertically into disks.

volume of slice $\approx \pi r^2 \Delta x$ $= \pi y^2 \Delta x$ $= \pi (x^2)^2 \Delta x$ $= \pi x^4 \Delta x$ total volume $= \pi \int_0^2 x^4 dx$

(b) the line x = 5

Slice horizontally into washers.

volume of slice
$$\approx \pi R^2 \Delta y - \pi r^2 \Delta y$$

 $= \pi (5 - x)^2 \Delta y - \pi (3)^2 \Delta y$
 $= \pi [(5 - \sqrt{y})^2 - 3^2] \Delta y$
total volume $= \pi \int_0^4 [(5 - \sqrt{y})^2 - 3^2] dy$

More Tutorial at www.dumblittledoctor.com

9. A spherical tank of radius 8 feet is buried 5 feet below ground and filled to a height of 11 feet with gasoline (42 pounds per cubic foot). Write an integral equal to the work done in pumping all the gasoline to ground level.

volume of slice
$$\approx \pi r^2 \Delta h = \pi (16h - h^2) \Delta h$$

weight of slice $\approx 42\pi (16h - h^2) \Delta h$
work to lift slice $\approx 42\pi (16h - h^2) \Delta h (21 - h)$
total work $= 42\pi \int_0^{11} (16h - h^2) (21 - h) \ dh$

10. Find the solution to $\frac{dy}{dx} = \frac{\cos x}{y^2}$ that passes through (0,2). Use separation of variables.

$$\int y^2 dy = \int \cos x dx$$
$$y^3/3 = \sin x + C$$
$$y^3 = 3\sin x + D$$
$$y = \sqrt[3]{3\sin x + D}$$

When x = 0, we have y = 2, so $2 = \sqrt[3]{3 \sin 0 + D}$, or $2 = \sqrt[3]{D}$. Thus, D = 8. Therefore, the solution is $y = \sqrt[3]{3 \sin x + 8}$.