
Final Exam

1. Consider the points P (−1, 1,−1), Q(−1,−2, 3) and R(−3, 2, 1).

a. (5 points) Find the interior angle θ of the triangle 4PQR at vertex P .

−→
PQ = 〈0,−3, 4〉
−→
PR = 〈−2, 1, 2〉

⇒

−→
PQ · −→PR = 5∣∣∣−→PQ

∣∣∣ = 5∣∣∣−→PR
∣∣∣ = 3

⇒ θ = arccos(1/3)

b. (5 points) Give an equation of the plane containing P , Q and R.

−→
PQ×−→PR = 〈−10,−8,−6〉 ⇒ −10(x + 1)− 8(y − 1)− 6(z + 1) = 0

c. (5 points) Compute the area of the triangle 4PQR.

A =
∣∣∣−→PQ×−→PR

∣∣∣ /2 =
√

200/2 = 5
√

2
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2. Suppose a particle moves in space according to the formula r(t) =
〈
t2/2,

√
2t, ln t

〉
, where

t > 0. Compute the following:

a. (5 points) A formula velocity, v(t).

v(t) = r′(t) =
〈
t,
√

2, 1/t
〉

b. (5 points) A formula for acceleration, a(t).

a(t) = v′(t) = 〈1, 0,−1/t2〉

c. (5 points) A formula for speed, v(t).

v(t) = |v(t)| =
√

t2 + 2 + 1/t2 =
√

(t + 1/t)2 = t + 1/t

Recall that t > 0, by assumption.

d. (5 points) The curvature, when t = 1; i.e. κ(1).

v(1) =
〈
1,
√

2, 1
〉

a(1) = 〈1, 0,−1〉
v(1) = 2

⇒ κ(1) =
|v(1)× a(1)|

[v(1)]3
=

∣∣〈−√2, 2,−√2
〉∣∣

23
=

√
2

4

e. (5 points) The tangential component of acceleration, when t = 1; i.e. aT (1).

aT (1) = v′(1) = 1− 1/t2
∣∣∣∣
t=1

= 0

f. (5 points) The normal component of acceleration, when t = 1; i.e. aN(1).

aN(1) = κ(1)[v(1)]2 =
√

2
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3. Let f(x, y) = x3 − 3x− 3y + y3.

a. (10 points) Determine the critical points for f .

fx = 3x2 − 3 = 0

fy = 3y2 − 3 = 0
⇒ x = ±1, y = ±1

So, the critical points are (−1,−1), (1, 1), (−1, 1) and (1,−1) .

b. (10 points) Use the Second Derivative Test to classify the critical points of f .

D = fxxfyy − f 2
xy = (6x)(6y)− 02 = 36xy

Thus,

C. P. D fxx Type

(−1,−1) 36 −6 rel. max.

(1, 1) 36 −6 rel. min.

(−1, 1) −36 n/a saddle

(1,−1) −36 n/a saddle
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(Continued from problem 3.)

c. (10 points) Use the method of Lagrange multipliers to find the maximum and minimum

values of f subject to the restriction that x2 +y2 = 1. (Hint: Repeated use of the restriction

equation may help.)

First note that x2 + y2 = 1 implies x2 − 1 = −y2 and y2 − 1 = −x2. Now,

∇f = λ∇g ⇒ 3x2 − 3 = 2λx

3y2 − 3 = 2λy
⇒ 3(x2 − 1)

x
= 2λ =

3(y2 − 1)

y
⇒ −y2

x
=
−x2

y

x3 = y3 ⇒ x = y ⇒ 1 = x2 + y2 = 2x2 ⇒ x = ±1/
√

2

(Note that we are allowed to divide by x and y above to solve for 2λ, since neither x nor y

can be 0; for otherwise, our original system would imply that −3 = 0. Now, the extreme

points are (−1/
√

2,−1/
√

2) and (1/
√

2, 1/
√

2). Thus,

f(−1/
√

2,−1/
√

2) = 5/
√

2 = maximum

and

f(1/
√

2, 1/
√

2) = −5/
√

2 = minimum .

d. (5 points) Find the absolute maximum of f inside the unit disk centered at the origin.

Remember to justify your answer.

By part a, we see that none of the critical points for f lie in the disk. So, the maximum

must be achieved on the boundary; i.e. on the unit circle. Hence, by part c, the maximum

of f inside the unit disk must be 5/
√

2 .
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4. Let f(x, y) = x2 − y2.

a. (10 points) Find the unit vector that points in the direction that maximizes Duf(2,−1).

∇f = 〈2x,−2y〉 ⇒ ∇f(2,−1) = 〈4, 2〉 ⇒ u = 〈4, 2〉 / |〈4, 2〉| = 〈
2/
√

5, 1/
√

5
〉

b. (10 points) Compute the maximum value of the the directional derivative of Duf(2,−1).

maximum = |∇f(2,−1)| = 2
√

5

c. (10 points) Find an equation of the tangent plane to f at (2,−1).

z − f(2,−1) = ∇f(2,−1) · 〈x− 2, y + 1〉 ⇔ z − 3 = 4(x− 2) + 2(y + 1)

d. (10 points) Compute the surface area of the part of f that lies inside the cylinder

x2 + y2 = 4.

A(S) =

∫∫

D

√
|∇f |2 + 1dA =

∫∫

D

√
4x2 + 4y2 + 1dA =

∫ 2π

0

∫ 2

0

√
4r2 + 1rdrdθ

= 2π

∫ 17

1

u1/2du

8
=

π

6
u3/2

∣∣∣∣
17

u=1

=

(
17
√

17− 1
)
π

6
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5. (15 points) Let E be the solid that lies in the first octant and between the spheres

x2 + y2 + z2 = 1 and x2 + y2 + z2 = 2. Suppose that the mass density of E is given by

δ(x, y, z) = xyz. Compute the mass of the E.

m =

∫∫∫

E

xyzdV

=

∫ π/2

0

∫ π/2

0

∫ √
2

1

(ρ sin φ cos θ)(ρ sin φ sin θ)(ρ cos φ)ρ2 sin φdρdφdθ

=

∫ π/2

0

∫ π/2

0

∫ √
2

1

ρ5(sin3 φ cos φ)(sin θ cos θ)dρdφdθ

=

(∫ π/2

0

sin θ cos θdθ

)(∫ π/2

0

sin3 φ cos φdφ

)(∫ √
2

1

ρ5dρ

)

=

(∫ 1

0

udu

) (∫ 1

0

u3du

) (
ρ6/6

∣∣∣∣
√

2

ρ=1

)

=

(
u2/2

∣∣∣∣
1

u=0

)(
u4/4

∣∣∣∣
1

u=0

)
· 7

6

=
7

48



6. Let F(x, y) = 〈cos(x− y), sin y − cos(x− y)〉 be a force field on R2.

a. (10 points) Show that F is conservative by finding a potential function for it.

fx = cos(x− y) ⇒ f(x, y) = sin(x− y) + g(y)

⇒ sin y − cos(x− y) = fy = − cos(x− y) + g′(y)

⇒ g′(y) = sin y

⇒ g(y) = − cos y + C

⇒ f(x, y) = sin(x− y)− cos y

Note that we are free to choose C so we pick C = 0.

b. (10 points) Compute the work done in moving a particle in the force field F along the

straight line segment from the origin to the point P (π/2, π/4).

W =

∫

C

F · dr =

∫

C

∇f · dr = f(π/2, π/4)− f(0, 0) = 1



7. (15 points) Given P (x, y) = −y and Q(x, y) = x, verify Green’s Theorem in the an-

nulus D = {(x, y) : 1 ≤ x2 + y2 ≤ 4}. (Hint: Geometry may help alleviate some of your

calculations.)

Let CR denote a the circle centered at the origin of radius R with counterclockwise (posi-

tive) orientation. Then r(t) = 〈R cos t, R sin t〉, for 0 ≤ t ≤ 2π, is a parameterization of CR,

and so,

∫

CR

Pdx + Qdy =

∫ 2π

0

(−R sin t)(−R sin tdt) + (R cos t)(R cos tdt) =

∫ 2π

0

R2dt = 2πR2.

With this notation, ∂D = −C1∪C2. (Note that the inner circle C1 of the annuls has clockwise

induced orientation.) Thus,

∫

∂D

Pdx + Qdy = −
∫

C1

Pdx + Qdy +

∫

C2

Pdx + Qdy = −2π + 8π = 6π .

On the other hand,

∫∫

D

(∂Q/∂x− ∂P/∂y)dA =

∫∫

D

2dA = 2A(D) = 2(π · 22 − π · 12) = 6π .

(We used that the area of the annulus is the area of the outer disk less the area of the inner

disk.)
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8. (15 points) Verify Stokes’ Theorem for F(x, y, z) = 〈x, x + y, x + y + z〉 over the part S

of the paraboloid z = 1− x2 − y2 above the xy-plane, where S is oriented with upward unit

normal and ∂S is given the induced orientation.

curlF =

∣∣∣∣∣∣∣∣∣

i j k

∂/∂x ∂/∂y ∂/∂z

x x + y x + y + z

∣∣∣∣∣∣∣∣∣
= 〈1,−1, 1〉

Now, S has parmeterization r(x, y) = 〈x, y, 1− x2 − y2〉 over the disk x2 + y2 ≤ 1. Since the

z-component of rx × ry = 〈2x, 2y, 1〉 is positive, we have

∫∫

S

curlF · dS =

∫∫

D

〈1,−1, 1〉 · 〈2x, 2y, 1〉 dA

=

∫∫

D

(2x− 2y + 1)dA

=

∫ 2π

0

∫ 1

0

(2r cos θ − 2r sin θ + 1)rdrdθ

=

∫ 2π

0

[
2r3

3
(cos θ − sin θ) +

r2

2

∣∣∣∣
1

r=0

]
dθ

=

∫ 2π

0

[
2

3
(cos θ − sin θ) +

1

2

]
dθ

=
2

3
(sin θ + cos θ) +

θ

2

∣∣∣∣
2π

θ=0

= π .

The boundary of S is the circle x2 + y2 = 1, z = 0. It has induced parameterization

r(t) = 〈cos t, sin t, 0〉, for 0 ≤ t ≤ 2π. Thus,

∫

C

F · dr =

∫ 2π

0

〈cos t, cos t + sin t, cos t + sin t + 0〉 · 〈− sin t, cos t, 0〉 dt

=

∫ 2π

0

cos2 tdt

=
1

2

(
t +

sin 2t

2

) ∣∣∣∣
2π

t=0

= π .
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9. (15 points) Let E be the the solid unit cube in the first octant having the origin as

one of its corners. For F(x, y, z) = 〈x, y, z〉, verify the Divergence Theorem over E. (Hint:

Symmetry and geometry can be used to cut down your computations. Be sure to mention

when/how you use these concepts, if you decide to use them.)

Let S1 be the face of the cube in the xy-plane. On S1, the outward unit normal is 〈0, 0,−1〉
and z = 0. Thus,

∫∫

S1

F · dS =

∫∫

S1

〈x, y, z〉 · 〈0, 0,−1〉 dS =

∫∫

S1

(−z)dS = 0.

Let S2 be the face of the cube parallel to S1; i.e. S2 is just S1 shifted 1 unit along the positive

z-axis. Then on S2, the outward unit normal is 〈0, 0, 1〉 and z = 1. Thus,

∫∫

S2

F · dS =

∫∫

S2

x, y, z · 〈0, 0, 1〉 dS =

∫∫

S2

dS = A(S2) = 1.

By symmetry, it follows that

∫∫

∂E

F · dS = (0 + 1) + (0 + 1) + (0 + 1) = 3 .

Now, ∫∫∫

E

div FdV =

∫∫

E

(1 + 1 + 1)dV = 3V (E) = 3 · 13 = 3 .
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