MULTIPLE CHOICE (5 points each)

CIRCLE THE LETTER NEXT TO THE SINGLE BEST ANSWER.

101. On one strand of DNA the nucleotide sequence is 5'-ATGC-3'. The complementary sequence in the other strand must be

a 5'-CGTA-3' d 5'-ATCG-3' b 5'-GCAT-3' e 5'-TACG-3'

c 3'-ATGC-5'

- 102. The "C-value paradox" refers to the <u>unexpected</u> observation that
- a salamanders have more DNA per cell than bacteria
- b mitochondrial genomes are similar in size to bacterial genomes
- c closely related organisms can have very different genome sizes
- d genome size varies greatly among prokaryotes
- e most DNA in eukaryotes does not code for genes
- 103. An experiment that definitively showed DNA was the genetic material involved
- a labeling E. coli DNA with heavy nitrogen.
- b injecting mice with a disease-causing organism.

More Tutorial at www.dumblittledoctor.com

- c inducing mutations that affected arginine synthesis in *Neurospora*.
- d using DNase to prevent the transformation of benign bacteria by dead virulent bacteria.
- e changing protein coats of tobacco mosaic viruses.
- 104. Which of the following features is NOT true of nucleosomes?
- a They contain five different kinds of histone proteins.
- b New histones are made while the DNA is replicated and assembled immediately into new nucleosomes.
- c They form a "spool", which the DNA wraps around about 30 times.
- d They are the only proteins that are part of the chromatin.
- e They are characteristic of eukaryotic chromosomes, but not of viral or bacterial chromosomes.
- 105. For a prokaryotic chromosome, which of the following is true?
- a RNAs can be transcribed off either DNA strand, depending on the gene, but are always made 5' > 3'.
- b RNAs can be transcribed off either DNA strand, depending on the gene, but are always made 3′ > 5′
- c RNAs from all genes are synthesized 5' > 3' off the same DNA strand.
- d RNAs from all genes are synthesized 3' > 5' off the same DNA strand.
- e Different genes can be transcribed off either strand, some in the 5' > 3' direction and some in the 3' > 5' direction.
- 106. Which of the following events is responsible for setting the frame of translation?
- a Attachment of the large ribosomal subunit to the small subunit
- b mRNA alignment with the small ribosomal subunit
- c mRNA alignment with the initial Met-tRNA
- d Ribosome "hopping" down the mRNA three bases at a time
- e RNA-RNA base pairing between the ribosome and the Shine-Delgarno sequence in the transcript
- 107. If DNA polymerases could add nucleotides in the 3' to 5' direction during replication, there would be no need for
- a DNA ligase
- b RNA primers
- c Okazaki fragments
- d gyrase
- e helicase
- 108. For double stranded DNA, which is NOT true?
- a [A]/[T] = 1
- b [C]/[G] = 1
- c [A] + [G] = [T] + [C]
- d [A] + [T] = [G] + [C]
- e [A] + [C] = [T] + [G]
- 109. Eukaryotic chromosomal replication
- a is unidirectional.
- b occurs from a single, unique origin, called *oriC*.
- c depends on specific termination sequences.

More Tutorial at www.dumblittledoctor.com

- d involves a θ -shaped conformation.
- has many replication forks. e
- 110. Proteins were once thought to be the genetic material because they
- have 20 kinds of subunits (amino acids). a
- could transform nonvirulent bacteria into virulent forms. b
- have more complex 3D structures than nucleic acids. c
- d are large molecules.
- make up the bulk of a chromosome. e
- 111. A sample of normal double-stranded frog DNA was found to have a guanine content of 18%. What is the expected proportion of adenine?
- 9% a

b

- d
- - e 82%

68

c 36%

32%

- 112. Which of the following statements about tRNAs is incorrect?
- There are between one and four tRNAs for each of the 20 amino acids. a
- tRNAs always adopt a clover-leaf conformation. b
- During initiation, the tRNA anticodon basepairs to a complementary sequence of the ribosomal RNA. c
- d tRNAs participate in both stable and transient RNA:RNA base pairings.
- All of the above statements are correct e
- 113. Which of the following statements about anticodons is <u>incorrect</u>?
- Each type of tRNAs has a unique anticodon. a
- b There are specific anticodons that bind to start and stop codons.
- Each anticodon consists of three bases. c
- d Anticodons may include modified bases.
- Anticodon "wobble" pairing results in degeneracy of the genetic code. e
- 114. Which of the following pictures best represents an RNA nucleotide chain, where S = sugar, P = phosphate, and B = nitrogenous base (A, G, C, or U)?

115. (replica	_	st the name	s and funct	cions of thr	ee enzymes that n	nust help the DNA polymerases during
]	Name		Funct	ion		
	-					_
						_
116. ((15 points) Li	st three imp	ortant feat	ures of the	genetic code	
-						_
-						_
-						
	_			•	" if the characteristin any members of	sic is present in <u>at least some</u> members of of the group.
	•				teria Viruses Euka	
(a) Lo	ts of noncodi	ng DNA				
(b) Rib	osomal RN <i>A</i>	A genes				
(c) DN	NA as its gene	etic material				
(d) RN	NA as its gene	etic material				
	cular chromo					
` ′	cap on mRNA					
	ultiple introns					
118. (11 points) Th	e percentag	es of differ	rent bases	in the genetic mat	erials of an RNA virus, a DNA virus, and
giraffe	were measur	ed by a not	-too-bright	t lab techni	cian, who lost the	sample identification tags. Identify the
source	oi each nuck	eic acid sam	ipie, giving	a reason i	or your choice.	
Sampl	e Adenine	Cytosine	Guanine	Thymine	Uracil	
(a)	28.0	22.0	22.0	0.0	28.0	
(b)	21.0	29.0	29.0	21.0	0.0	
(c)	27.0	24.0	26.0	23.0	0.0	

Sample (a) is from a	because
Sample (b) is from a	_ because
Sample (c) is from a	because

SHORT PROBLEMS

119. (12 points) Shown below is the structure of a mouse gene, divided into segments labeled **a-i**. The gene contains three exons, two introns, a promoter, an enhancer and an AAUAAA tailing signal, all inside different segments. Use the drawing to answer the questions below.

Enhancer Promoter 5' UTR Exon1 Intron1 Exon2 Intron2 Exon3 Tailing Signal

¥	¥	ŧ	↓	↓	¥	ŧ	¥	¥
a	b	c	d	e	f	g	h	i

- A) Which segment or segments of the gene will be included in the initial RNA transcript? List all appropriate letters.
- B) Which segment or segments of the gene will be found in the mature processed transcript? List all appropriate letters.
- C) Will "extra" RNA (that is not transcribed from the gene) be added to the mRNA, and if so, to which segment or segments?
- D) What segment or segments of the gene will contain the <u>translation initiation</u> codon?
- 120. (16 points) Consider the following piece of messenger RNA:

5'-AUGGAGUCGU<u>U</u>AAACCGGUGAUCGU-3'

A) Draw both strands of the segment of DNA from which this mRNA was transcribed. Mark the 3' and 5' ends of both strands, and place a star next to the <u>template</u> strand.

- B) Using the codon chart, give the amino acid sequence of the protein that would be produced by translating this mRNA. Mark the amino and carboxy ends of the sequence.
- C) Suppose that the underlined U is mutated to an A. What is the new amino acid sequence?
- 121. (20 points) Draw in the newly synthesized DNA strands in the replication bubble shown below (lines or arrows are fine, don't draw every nucleotide). Label the following features: 1) origin(s) of replication; 2) Okazaki fragments; 3) RNA primers; 4) leading and lagging strands; 5) polarities of old and new strands. You can use the numbers of the features as labels

101.	b	102.	С	103.	d	104.	d
105.	a	106.	С	107.	С	108.	d
109.	е	110.	a	111.	b	112.	С
113.	b	114.	b				

Bot/Zoo 342

115. Possible answers include:

Key to Exam 1

- 1) Helicase unwinds DNA helix, separates strands
- 2) Gyrase (Topoisomerase) relieves extra twists in DNA ahead of replication fork

Fall 2003

- 3)RNA polymerase (Primase) lays down RNA primer for DNA pol to extend
- 4)Ligase seals gaps between nucleotides in DNA sugar-phosphate

More Tutorial at www.dumblittledoctor.com

backbone

- 5)Telomerase extends repeats on ends of linear chromosomes 6)Single-strand binding proteins (not really enzymes, but I allowed this answer) keeps DNA strands separate after helicase unwinds them
- 116. The genetic code (not the genetic material) is triplet, continuous, non-overlapping, degenerate, punctuated only by start/stop signals, and nearly universal.

```
117.
а
      0
            0
      +
b
            0
С
            +
                  +
d
      0
            +
                  0
е
            +
                 + or 0
f
      0
            0
                  +
      0
            0
g
                  +
```

- 118. A) RNA virus it has uracil not thymine
 - B) giraffe A=T and G=C, so DNA is double-stranded
 - C) DNA virus A not= T, G not= C, so DNA is single-stranded
- 119. A) c, d, e, f, g, h, (i optional)
 - B) d, f, h (i optional)
 - C) Yes-c and/or i
 - D) d
- 120.A) 3'-TACCTCAGCAATTTGGCCACTAGCA-5' * 5'-ATGGAGTCGTTAAACCGGTGATCGT-3'
- B) N-Met-Glu-Ser-Leu-Asn-Arg-C
- C) N-Met-Glu-Ser-C
- 121.

See Figures 3.6 and 3.9 in text.