Some questions on the exam may ask you to state definitions or theorems.

Practice Problems

- **1.** For a set A let $\mathcal{P}(A)$ be the set of all subsets of A (called the **power set** of A). Show that if A and B are sets such that $\mathcal{P}(A) \subseteq \mathcal{P}(B)$, then $A \subseteq B$.
- **2.** For each subset of $\mathbb{R} \times \mathbb{R}$ below decide whether or not it determines a function $\mathbb{R} \to \mathbb{R}$. If it does, is the function one-to-one? Is it onto?
 - (a) $\sigma = \{(a, b) \in \mathbb{R} \times \mathbb{R} \mid b^2 a^2 = 1, b \le 0\},\$
 - (b) $\tau = \{(a, b) \in \mathbb{R} \times \mathbb{R} \mid b^2 a^2 = -1, \ \overline{b} \ge 0\}.$
- **3.** Let $f: A \to B$ be an arbitrary function. Prove that
 - (a) if f is one-to-one and $g, h: C \to A$ are such that $f \circ g = f \circ h$, then g = h.
 - (b) if f is not one-to-one, then there exist functions $g, h: \mathbb{Z}_2 \to A$ such that $f \circ g = f \circ h$ and $g \neq h$.
- **4.** Show that if $f: A \to B$ is a bijection and $g: B \to A$ is a function such that $f \circ g = \iota_B$, then $g = f^{-1}$.
- 5. Let \sim be the relation on the set $\mathbb{R}^+ \times \mathbb{R}^+$ defined by

 $(a_1, a_2) \sim (b_1, b_2)$ if and only if $a_1 b_2 = a_2 b_1$.

- (a) Prove that \sim is an equivalence relation.
- (b) Visualizing the elements of $\mathbb{R}^+ \times \mathbb{R}^+$ as points in the first quadrant, give a geometric description of the partition corresponding to \sim .
- (c) Find a function with domain $\mathbb{R}^+ \times \mathbb{R}^+$ whose kernel is \sim .
- **6.** Let $r, s \in \mathbb{R}$, and define an operation * on \mathbb{R} by x * y = rx + sy for all $x, y \in \mathbb{R}$. For which $r, s \in \mathbb{R}$ is the operation * (a) commutative, (b) associative?
- 7. Show that the function $\varphi \colon \mathbb{R}_{\pi} \to \mathbb{R}_{2\pi}$ defined by $\varphi(x) = 2x$ for all $x \in \mathbb{R}$ is an isomorphism of $(\mathbb{R}_{\pi}, +_{\pi})$ with $(\mathbb{R}_{2\pi}, +_{2\pi})$.
- 8. TRUE or FALSE? Justify your answer.
 - (a) If $f, g: A \to A$ are functions such that $f \circ g = \iota_A$, then $f = g^{-1}$.
 - (b) If $f, g: A \to A$ are functions such that $f \circ g = \iota_A$, then g is one-to-one.
 - (c) $(S,*) \not\cong (S',*')$ if there exists a function $\varphi \colon S \to S'$ that is not an isomorphism between (S,*) and (S',*').