- 1) Let R be a ring and I be an ideal of R.
 - (a) Prove that if J is an ideal of R containing I, then $\bar{J} \stackrel{\text{def}}{=} \{ \bar{a} \in R/I : a \in J \}$ is an ideal of R/I.

Solution. First observe that if $\bar{a} \in \bar{J}$, then, there is some $b \in J$ such that $\bar{b} = \bar{a}$, i.e., $a - b \in I \subseteq J$. But then, since J is closed under addition and $b \in J$, this means that $a \in J$. Therefore, if $\bar{a} \in \bar{J}$, then $a \in J$.

Since $J \neq \emptyset$, clearly $\bar{J} \neq \emptyset$.

Let $\bar{a}, \bar{b} \in \bar{J}$. Then $a, b \in J$ and so $a + b \in J$, and hence $\bar{a} + \bar{b} = \overline{a + b} \in \bar{J}$ [by definition of \bar{J}].

In the same way, if $\bar{a} \in \bar{J}$ and $\bar{r} \in \bar{R}$, then $r \in R$ and $a \in J$. Since J is an ideal, we have that $r \cdot a \in J$. Thus, $\bar{r} \cdot \bar{a} = \overline{r \cdot a} \in \bar{J}$.

(b) Prove that if \bar{J}' is an ideal of R/I, then $J' \stackrel{\text{def}}{=} \{a \in R : \bar{a} \in \bar{J}'\}$ is an ideal of R containing I.

Solution. Since $\bar{J}' \neq \emptyset$, clearly $J' \neq \emptyset$.

Let $a, b \in J'$. Then, $\bar{a}, \bar{b} \in \bar{J}'$ [by definition]. Since \bar{J}' is an ideal, $\bar{a} + \bar{b} = \overline{a + b} \in \bar{J}'$. So, $a + b \in J'$ [by definition of J' again].

In the same way, let $r \in R$ and $a \in J$, then $\bar{r} \in \bar{R}$ and $\bar{a} \in \bar{J}'$, and hence $\bar{r} \cdot \bar{a} = \overline{r \cdot a} \in \bar{J}'$. Thus, $r \cdot a \in J'$.

2) Let R be a commutative ring with identity and $a \in R$ such that $a^{n-1} \neq 0$, but $a^n = 0$, for some positive integer n. Prove that $R[x]/(ax-1) = {\bar{0}}$, i.e., it is the zero ring.

Solution. It suffices to show that $1 \in (ax - 1)$. But, since $a^n = 0$

$$1 = (1 - a^n x^n) = (1 - ax)(1 + ax + a^2 x^2 + \dots + a^{n-1} x^{n-1}).$$

Since $1 \in (ax - 1)$, we have that (ax - 1) = (1) = R[x], and the quotient is then the zero ring.

A more direct way to see this, is to see that we are adjoining an inverse of a to R, say α : $a \cdot \alpha = 1$ in $R' \stackrel{\text{def}}{=} R[x]/(ax-1) = R[\alpha]$. Then, for all b in R', we have that $a^nb = 0$, since $a^n = 0$. But then, $\alpha^n a^n b = (\alpha a)^n = 1_{R'} b = b = 0$. So, every element of R' is equal to zero.

Г

3) Let R be an integral domain, F be its field of fractions [or quotient field], and K be field such that $R \subseteq K$. Prove that there is an *injective homomorphism* $\phi : F \to K$, such that for all $a \in R$, $\phi\left(\frac{a}{1}\right) = a$. [Hint: To start, you need to find the formula for ϕ . Think of the most natural way of seeing an element of F inside of K, remembering that the image is contained in a *field*. Also, you will have to show that your formula is well defined, i.e., if $\frac{a}{b} = \frac{c}{d}$, then $\phi\left(\frac{a}{b}\right) = \phi\left(\frac{c}{d}\right)$.]

Solution. Let $\phi: R \to K$ defined by $\phi(a/b) \stackrel{\text{def}}{=} a \cdot b^{-1}$. [Note that since K is a field, and $b \in R - \{0\} \subseteq K - \{0\}$, we have $b^{-1} \in K$.]

Well defined: Suppose that a/b = c/d, i.e., ad = bc. Then, since $d \neq 0$, we have $a = bcd^{-1}$ [in K]. So, $\phi(a/b) = ab^{-1} = bcd^{-1}b^{-1} = cd^{-1} = \phi(c/d)$. Hence, ϕ is well defined.

Homomorphism: We have:

$$\phi(1_F) = \phi(1/1) = 1 \cdot 1^{-1} = 1,$$

$$\phi(a/b + c/d) = \phi((ad + bc)/bd) = (ad + bc)(bd)^{-1} = (ad + bc)(b^{-1}d^{-1})$$

$$= ab^{-1} + cd^{-1} = \phi(a/b) + \phi(c/d),$$

$$\phi(a/b \cdot c/d) = \phi((ac)/(bd)) = (ac)(bd)^{-1} = acb^{-1}d^{-1}$$

$$= ab^{-1}cd^{-1} = \phi(a/b) \cdot \phi(c/d).$$

Injective: If $\phi(a/b) = 0$, then $ab^{-1} = 0$. Since we are in a field [and so a domain], there is no zero divisor, and so either a = 0 or $b^{-1} = 0$. Since $b \neq 0$, we have that $b^{-1} \neq 0$ [it is invertible], so a = 0. Then, $a/b = 0/b = 0_F$. Hence ϕ is injective

Now, by its definition, clearly $\phi(a/1) = a \cdot 1^{-1} = a$.

4) Prove that $\mathbb{Z}[i\sqrt{3}]/(2-i\sqrt{3}) \cong \mathbb{Z}/7\mathbb{Z}$.

Solution. [Here are a few preliminary comments: first, the ring $\mathbb{Z}[i\sqrt{3}]$ is very much like the Gaussian Integers $\mathbb{Z}[i]$. Note that $\mathbb{Z}[i\sqrt{3}] \cong \mathbb{Z}[x]/(x^2+3)$, and hence $\{1, i\sqrt{3}\}$ is a basis, i.e., every element in this ring can be represented in a unique way as $a + bi\sqrt{3}$.]

Let $\phi: \mathbb{Z} \to \mathbb{Z}[i\sqrt{3}]/(2-i\sqrt{3})$ be the unique homormophism, i.e., $\phi(n) = n \cdot \bar{1} = \bar{n} = n + (2-i\sqrt{3})$. [Note, we do not need to prove that the map " $n \mapsto n \cdot 1_R$ " is a homomorphism! It is *always* a homomorphism.]

We have that

$$\phi(7) = \overline{7} = \overline{(2 - i\sqrt{3}) \cdot (2 + i\sqrt{3})} = \overline{(2 - i\sqrt{3})} \cdot \overline{(2 + i\sqrt{3})} = \overline{0} \cdot \overline{(2 + i\sqrt{3})} = \overline{0}.$$

Hence, $(7) \subseteq \ker \phi$.

Now, let $n \in \ker \phi$. Then, $\phi(n) = \bar{n} = \bar{0}$, i.e., $n \in (2 - i\sqrt{3})$, or $n = (a + bi\sqrt{3})(2 - i\sqrt{3})$. So, $n = (2a + 3b) + (2b - a)i\sqrt{3}$. Thus, a = 2b [for the imaginary to be zero – we are using the unique representation here!!], which yields n = 7b, and therefore $\ker \phi \subseteq (7)$.

We can then conclude that $\ker \phi = (7)$.

Let $R \stackrel{\text{def}}{=} \mathbb{Z}[i\sqrt{3}]/(2-i\sqrt{3})$. Then, in R, $\overline{2-i\sqrt{3}} = \overline{0}$, i.e., $\overline{i\sqrt{3}} = \overline{2}$. So, given $\overline{a+bi\sqrt{3}} \in R$ [and so $a,b \in \mathbb{Z}$], we have that $\phi(a+2b) = \overline{a+2b} = \overline{a+bi\sqrt{3}}$, and ϕ is onto.

By the First Isomorphism Theorem, $\mathbb{Z}/(7) \cong \mathbb{Z}[i\sqrt{3}]/(2-i\sqrt{3})$.