More tutorial at www.LittleDumbDoctor.Com

- 1) Let $\alpha_1 \stackrel{\text{def}}{=} 8 8i$, $\alpha_2 \stackrel{\text{def}}{=} 10 + 15i$, $\beta \stackrel{\text{def}}{=} 2 3i$, and let $I \stackrel{\text{def}}{=} (\beta)$ be the principal ideal of $\mathbb{Z}[i]$ generated by β .
 - (a) Compute the quotient and remainders of the divisions of α_1 and α_2 by β ?
 - (b) Is $\alpha_1 \equiv \alpha_2 \pmod{I}$?
- 2) Let $\zeta_{11} \stackrel{\text{def}}{=} e^{2\pi i/11}$. How many intermediate fields does the extension $\mathbb{Q}[\zeta_{11}]/\mathbb{Q}$ have [including \mathbb{Q} and $\mathbb{Q}[\zeta_{11}]$]? What are their degrees over \mathbb{Q} ? [You do **not** have to find them, just count them and give their degrees.]
- 3) Let R be a ring [which you can assume is commutative with identity, but it is not necessary] and $a \in R$. Let $\phi : R \to R'$ be a homomorphism such that $a \in \ker \phi$. Prove that the map $\psi : R/(a) \to R'$, defined by $\psi(b+(a)) \stackrel{\text{def}}{=} \phi(b)$ gives a well-defined [you have to prove that it is well-defined] ring homomorphism.
- 4) Prove that if F is a field and F[[x]] represents formal power series over F [as in the second extra-credit problem], then all non-zero ideals of F[[x]] are of the form (x^n) where n is a non-negative integer. [Hint: You can use any fact in the statement of the extra-credit problem.]
- 5) Construct a field with 8 elements. [Hint: Extend some known field.]
- **6)** Let F be a field of characteristic $p \neq 0$, for which the polynomial $f(x) \stackrel{\text{def}}{=} x^p x a \in F[x]$ is irreducible. Let α be a root of f(x) [in some extension of F].
 - (a) Prove that $\alpha + 1$ is also a root of f(x).
 - (b) Prove that $F[\alpha]$ is the splitting field of f(x) over F. [Hint: Use (a) to find all roots of f.]
 - (c) Prove that $G(F[\alpha]/F)$ is cyclic.
- 7) Let $K \stackrel{\text{def}}{=} \mathbb{Q}[\sqrt[4]{2}, i]$.
 - (a) Find $[K:\mathbb{Q}]$.
 - (b) Give a \mathbb{Q} -basis for K [as a vector space over \mathbb{Q}].
 - (c) Prove that K/\mathbb{Q} is Galois.

More tutorial at www.LittleDumbDoctor.Com

- (d) If $\sigma \in G(K/\mathbb{Q})$, then what are the possible values of $\sigma(\sqrt[4]{2})$ and $\sigma(i)$?
- 8) In this problem we will show that if R is commutative ring with identity, and $a \in R$ is such that $a^n = 0$ for some positive integer n, then a is in every maximal ideal of R. [Note that if $a \neq 0$, then R is **not** an integral domain!]
 - (a) Let I be an ideal and $a \in R$. Prove that

$$(I,a) \stackrel{\text{def}}{=} \{x + ra : x \in I \text{ and } r \in R\}$$

is an ideal of R that contains I and a.

- (b) Prove that if M is a maximal ideal and $a^n = 0$ [and you can assume $a^{n-1} \neq 0$] for some positive integer n, with $a \notin M$ [to later derive a contradiction], then $a^{n-1} \in M$. [**Hint:** Start by proving that $1_R \in (M, a)$.]
- (c) Prove that since $a^{n-1} \in M$, we actually have $a \in M$ [which is then a contradiction to the fact that $a \notin M$].